
ERSelenium Framework

Screencast
http://www.wocommunity.org/podcasts/WOWODCW09-TDD.mov - 1 hour plus session on Test Driven Development with WebObjects presented
by Denis Frolov on WOWODC 09. Shows how to use ERSelenium, jUnit, and Mockito with WebObjects.

Quick Start
Checkout the Project Wonder - the ERSelenium is in the Wonder/Frameworks/Misc folder.
Examine test cases from Wonder/Examples/Misc/ERSeleniumExample/Resources/Selenium/main/ and from in Eclipse textBugTracker
editor.
Launch ERSeleniumExample and point your browser to SeleniumStartTesting Direct Action url (e.g. http://localhost/cgi-bin/WebObjects/E

).RSeleniumExample.woa/-42422/wa/SeleniumStartTesting
or Launch BugTracker and point your browser to SeleniumStartTesting Direct Action url (e.g. http://localhost/cgi-bin/WebObjects/BugTrac

).ker.woa/-42422/wa/SeleniumStartTesting

You can also use Selenium IDE to create and edit tests:

Launch FireFox and install .Selenium IDE Firefox plugin
Using install Selenese-ide-plugin.js (it is in ERSelenium/Resources).Selenium IDE format plugin installation instructions

Play around with test cases from ERSeleniumExample/Resources/Selenium/ using Selenium IDE.

Overview and Usage Notes
ERSelenium provides several features for effective use of with WebObjects applications including:SeleniumCore

Custom setup/teardown actions that can be run before/after each test.
Base URL independence.
Support of HTML and Selenese test formats.
"On-the-fly" generation of test suites from the files in your project's source tree.
Bookmarkable DirectAction url to run all tests (can be used for automated testing).
Metacommands (special instructions specified in comments).

SeleniumCore is the powerful javascript toolkit for web applications "black-box" testing. It emulates different kinds of user actions such as: clicking
 the hyperlink, editing text in the input field, choosing item from the list and so on. See also: Selenium

Opening Tests in Selenium IDE

You need to select Selenese in the Options -> Format submenu before the Selenium IDE will allow you to open tests in the
Selenese format

http://www.wocommunity.org/podcasts/WOWODCW09-TDD.mov
http://wiki.objectstyle.org/confluence/display/WONDER/Getting+Started+with+BugTracker
http://localhost/cgi-bin/WebObjects/ERSeleniumExample.woa/-42422/wa/SeleniumStartTesting
http://localhost/cgi-bin/WebObjects/ERSeleniumExample.woa/-42422/wa/SeleniumStartTesting
http://localhost/cgi-bin/WebObjects/BugTracker.woa/-42422/wa/SeleniumStartTesting
http://localhost/cgi-bin/WebObjects/BugTracker.woa/-42422/wa/SeleniumStartTesting
https://addons.mozilla.org/en-US/firefox/addon/2079/
http://wiki.openqa.org/display/SIDE/Contributed+Extensions+and+Formats
http://openqa.org/selenium-core/
http://openqa.org/selenium-core/

1.
2.

Adding the ERSelenium framework dependency to an Application
You can add a ERSelenium test runner framework dependency to your application with Eclipse/WOLips:

Add the ERSelenium.framework to your project's Libraries dependency. See the tutorial: Add a Framework Dependency
(Optionally. Disabled by default. Use with caution). Enable the Selenium tests direct action url in production mode via the property:

SeleniumTestsEnabled=true

Debug output of ERSelenium can be enabled in Properties by:

log4j.logger.er.selenium = DEBUG

Other ERSelenium properties:

SeleniumTestsRoot="SomeOtherPath" - change the tests location. By default ERSelenium will search for tests in
"Resources/Selenium".
SeleniumReportPath="PathName" - specified the path to the report file, which is created after the testing is done.
"./Contents/Resources/" is the default value.

In your SeleniumTestsRoot folder (Resources/Selenium by default) you should create tests hierarchy. Tests are divided into groups, each group is
located in its own folder. In each folder there should be a collection of test files, each in one of the formats, supported by ERSelenium. Example
hierarchy:

./Resources
 ./Selenium
 ./registration
 ./successful.sel
 ./alreadyexists.sel
 ./shop
 ./buyitem.html
 ./notenoughmoney.html
 ./transfer.sel

You can use both standard HTML and wiki-like Selenese formats for writing tests although Selenese format is usually a preferred choice.

To run all tests point your browser to SeleniumStartTesting Direct Action:
http://baseurl/wa/SeleniumStartTesting

Example:
http://localhost/cgi-bin/WebObjects/SampleProject.woa/-42421/wa/SeleniumStartTesting

To run a specific group of tests, add "/TestGroupName":

http://baseurl/wa/SeleniumStartTesting/TestGroupName
http://127.0.0.1/cgi-bin/WebObjects/SampleProject.woa/-42421/wa/SeleniumSt
artTesting/registration

Some tips for writing tests for ERSelenium

https://wiki.wocommunity.org/display/documentation/Add+a+Framework+Dependency
http://baseurl/wa/SeleniumStartTesting
http://localhost/cgi-bin/WebObjects/SampleProject.woa/-42421/wa/SeleniumStartTesting

Don't use full URLs with open/openWindow commands (part will be added by ERSelenium):http://baseurl

|open|/wa/EditPerson
|open|/

You can use setup/teardown methods. They should be implemented as direct actions in the separate class, which should be
er.selenium.SeleniumAction-descendant. SeleniumAction class has some handy helper methods and automatically turns your
selenium-related actions off when selenium is disabled in Properties. Here's the example of using selenium-related direct actions in the
test (suppose that resetSessionAction() is defined in the class "Selenium"):

|open|/wa/Selenium/resetSession

You can use @repeat-@values-@done metacommands to execute specific part of the test with additional values edited in textboxes,
e.g.:

@repeat
 ...some actions...
 @values user1 user2 user3
 |type|user|user0
 @values pass1 pass2 pass3
 |type|password|pass0
 ...some more actions...
 @done

The commands between @repeat and @done will be repeated several times, each time with new value in "user" and "password" input
field. The values are seperated by spaces and if you have multiple @values lines, they all must have the same number of parameters.
The @values section applies to the value of the next command.

Note: in Selenese format, lines that don't begin with "|" are treated as comments, so metacommands in the example above will be safely
processed by Selenium IDE.

Selenium IDE Firefox plugin and can be very handy for creating and editing Selenium tests. Selenium IDE SeleneseXPath Checker
source plugin with proper comments support resides in ERSelenium/Resources/selenese-ide-plugin.js.

Using basic flow control

ERSelenium comes with a preinstalled user-contributed extension that provides some basic flow control. You can use its commandsflowControl
as described in the .flowControl documentation

For example, consider a test page that displays an integer counter (in the format "Counter = ", where is the current value of the counter), andn n
has an "Increment" button with . The following Selenese fragment would repeatedly press the button until the counter reachedid="increment"
10:

while	!selenium.isTextPresent("Counter = 10");	
click	increment	
endWhile		

Standalone runner
ERSelenium offers tests' developers several nice features - like automatic test suite generation, metacommands and URL independence.

http://baseurl
http://release.openqa.org/selenium-ide/0.8.7/selenium-ide-0.8.7.xpi
https://addons.mozilla.org/ru/firefox/addon/1095
http://wiki.openqa.org/display/SEL/flowControl
http://wiki.openqa.org/display/SEL/flowControl

Unfortunately this leads to some troubles when trying to execute your tests with Selenium-RC. This is where StandaloneRunner can be very
helpful.

Selenium-RC is essentially a selenium-server and a set of client libraries that you can use. You can write any kind of client application that sends
particular commands to the server and receives back status codes. Among these commands are typical selenium commands ("click", "type" and
so on) and several specific ("open specified browser"). Selenium-RC does a great job of preparing the browser profile (it turns off confirmation
dialog boxes, clears cookies and so on) and gives a lot of other nice features. One of the most useful is the ability to execute tests from the
command line. It's a typical task that is usually executed on build server on regular or per-commit basis.

The problem is that if you have your tests written with ERSelenium flavor, you won't be able to run them directly with Selenium-RC - as you won't
even have a test suite file. But you can do this with StandaloneRunner. To execute the tests you must have Selenium-RC server running in the
background. Note that it should be started in windowed mode (not via SSH) - i.e. not in the headless mode. Assuming that you have your
application built, you should use the following commands:

YourApp.woa/YourApp <tests root folder> <application root url> <selenium-rc
server host> <selenium-rc server port> <browser type> \
 -DWOApplicationClass=er.selenium.rc.StandaloneRunner
-Dfile.encoding=utf-8

This will execute the tests using the Selenium-RC server on the specified host and port with the specified browser. The <application root url> will
be used as a root url for all urls that are used in tests. Tests from <tests root folder> will be executed (they will be searched for recursively).

Note, that two last arguments are essential: -DWOApplicationClass substitutes your application's application class with
er.selenium.rc.StandaloneRunner, which will do all the testing and then exit without entering WOApplication's requests handling loop. The last
argument ensures proper encoding.

Here is the real-world example commands:

cd /Library/WebObjects/Applications
./YourApp.woa/YourApp ./YourApp.woa/Contents/Resources/Selenium
http://localhost/cgi-bin/WebObjects/YourApp.woa localhost 4444 '*firefox' \
 -DWOApplicationClass=er.selenium.rc.StandaloneRunner
-Dfile.encoding=utf-8

This will execute tests from using the /Library/WebObjects/Applications/YourApp.woa/Contents/Resources/Selenium http://localhost/cgi-bin/
 as the root url in firefox browser using Selenium-RC server on on its default port .WebObjects/YourApp.woa localhost 4444

The sample of successful output is:

- test
'/usr/local/wondercap2/dep/YourApp/14662/dep/dist/YourApp.woa/./Contents/R
esources/Selenium/Commenting/LoginViaCommenting.sel' PASSED
- test
'/usr/local/wondercap2/dep/YourApp/14662/dep/dist/YourApp.woa/./Contents/R
esources/Selenium/Commenting/NotifyAboutReplies.sel' PASSED
- test
'/usr/local/wondercap2/dep/YourApp/14662/dep/dist/YourApp.woa/./Contents/R
esources/Selenium/Commenting/SignUpViaCommenting.sel' PASSED
- test
'/usr/local/wondercap2/dep/YourApp/14662/dep/dist/YourApp.woa/./Contents/R
esources/Selenium/Commenting/SuccessfulComment.sel' PASSED

All tests in tests root folder are always executed (even if there are failures). The executed command will fail if one of the tests fails.

http://seleniumhq.org/documentation/remote-control/
http://localhost/cgi-bin/WebObjects/YourApp.woa
http://localhost/cgi-bin/WebObjects/YourApp.woa

	ERSelenium Framework

