
Your First Rest Project

Introduction
Create a new project
Create the database model

Database structure
Creating the EOModel
Using migrations

Creating REST controllers and routes
Creating controllers
Adding the routes
Adding posts and authors with curl
Adding HTML views for blog posts

Introduction
In the first part of the Blog tutorial, you will learn:

How to create a EOModel for the database (we will use H2)
How to use migrations to create the database tables
How to use ERRest to create blog posts with JSON format and how to display the blog posts in HTML for readers

Create a new project
You will need to create a new project for this tutorial. In Eclipse, open the menu, select and select (or File New Wonder REST Application ERRest

, according to WOLips version). Name your project as .Application your BlogRest

Create the database model

Database structure

We will build a small database model for the blog. The database will have two tables: BlogEntry and Author.

BlogEntry will have the following columns:

Column name Type Constraints

id integer primary key

title string(255)

content string(4000)

creationDate timestamp

lastModified timestamp

author integer relation with Author

Author will have the following columns:

Column name Type Constraints

id integer primary key

firstName string(50)

lastName string(50)

email string(100) unique

Creating the EOModel

To create the database, we will first create a EOModel and use migrations to build the database on the file system (H2 will take care of creating the
database file).

An EOModel consists of entities, attributes and relationships. When using it in a RDBMS context, an entity is a table (or a view), an attribute is a table
column and a relationship is a join between two tables.

To create the EOModel, in the project right-click on the project name and select -> .New EOModel

Name it and in the plugin list, select . Click .BlogModel H2 Finish

The model should show up in a window that looks like this:

If it didn't show up, the window might have opened behind the main Eclipse window. If that's the case, open the menu and select the windows Window
that have in its name.Entity Modeler

In the Entity Modeler window, click on , and for the field, typeDefault URL

jdbc:h2:~/BlogTutorial

. When the database will be created, it will be stored in your home directory (/Users/youruser/ on OS X).

You can also specify an absolute path where to store in you h2 database files. For example on Windows OS field can be like this:URL

jdbc:h2:C:/Users/ ... /BlogTutorial

Notice, in the path, *nix like file separator "/" instead of Windows like "\" (as you can read).here

Now, right-click on and select .BlogModel New Entity

Type the following details in the tab:Basic

Name: BlogEntry
Table Name: BlogEntry
Class Name: your.app.model.BlogEntry

Now, it's time to add the entity's attributes (aka, the table's columns). You will see that the entity already have an attributed named "id". That attribute is a
integer for the primary key. Leave it there.

Let's create the first attribute: the title of the blog entry. Right-click on the entity and select . Type the following values:New Attribute

Name: title
Column: title
Prototype: varchar255

When you use prototypes, you don't need to define the type (varchar, int, etc.) for the database, so by using prototypes, if you switch from a RDBMS
system to another one, say from H2 to MySQL, you only need to change the JDBC connection string and bundle the EOF plugin for the RDBMS, no need
to switch data types in the model.

Now, repeat the last two steps to create the other attributes for the entity, with the following values:BlogEntry

http://www.h2database.com/html/faq.html

Attribute name Column Prototype

content content longtext

creationDate creationDate dateTime

lastModified lastModified dateTime

If you did everything well, the list of attributes should look like this:

You will notice that the attributes have a column with a lock in it. When a lock is present, it will use the value of that attribute for UPDATE ... WHERE
 statement. This is to do optimistic locking, aka to prevent data conflict when the data object was modified by two different users. Using attribute = ''

timestamps for optimistic locking is not a good idea because for certain RDBMS, the value can be different because of milliseconds, so remove the locks
on the attribute. The final list should look like this:creationDate

Next step is to create the entity. Create a new entity with at its name (and also as the table name), and for the class name, use Author Author your.app.
. The attributes for this entity are:model.Author

Attribute name Column Prototype

firstName firstName varchar50

lastName lastName varchar50

email email varchar100

Final list of attributes should look like this:

Now, it's time to link the two entities together. An Author can have multiple blog entries, and a BlogEntry can only have one author. To create the
relationship (the join), right-click on and select . On your right, select in the list. On your left, select Author New Relationship BlogEntry to many

, and on your right, select . Now, in BlogEntry, we need to store the primary key of the author so that we can make the join. The BlogEntries to one Author
relationship builder allow us to add that attribute, so make sure is checked (it is checked by default). The and a new foreign key named Create

 pane should look like this:Relationship

If you check in the tab, you should see that now have a relationship, and have a relationship.Outline Author blogEntries BlogEntry author

You are now ready to save the model. Save it (File -> Save) and close the window. If you open the in the main Eclipse window, Entity Modeler Sources
you will notice that the folder contains a package named . (If this folder doesn't appear, you may need to set your preferences to Sources your.app.model
automatically generate these source files; see the second suggestion on http://wiki.wocommunity.org/display/documentation

.)/Useful+Eclipse+or+WOLips+Preferences

That package have four Java classes: , , and . Those classes were generated by Veogen, a templating engine _Author Author _BlogEntry BlogEntry
build on Velocity. The two classes that starts with a underscore are recreated every time you change the EOModel, so if you want to change something in
those classes, you need to change the template (no need for that right now). But you can change freely the two classes that don't have the underscore,
and this is what we will be doing.

What we are going to do is to write a simple method that returns the full name of an author, e.g. a method that simply concatenate the first name, a space
and the last name of the author. To do so, double-click on and add the following methods:Author.java

public String fullName() {
 return this.firstName() + " " + this.lastName();
 }

Nothing fancy here. Now open and add the following method:BlogEntry.java

 @Override
 public void awakeFromInsertion(EOEditingContext editingContext) {
 super.awakeFromInsertion(editingContext);
 NSTimestamp now = new NSTimestamp();
 setCreationDate(now);
 setLastModified(now);
 }

http://wiki.wocommunity.org/display/documentation/Useful+Eclipse+or+WOLips+Preferences
http://wiki.wocommunity.org/display/documentation/Useful+Eclipse+or+WOLips+Preferences

Why are we adding this? is a very good way of setting default values when creating a new instance of a Enterprise Object (EO). In awakeFromInsertion
this case, we want to set automatically the creation and last modification dates without having the user to add those values.

Now, let's use migrations to actually create the database.

Using migrations

Migrations allow you to create the tables and columns (and some types of constraint). has support to generate the code for the first Entity Modeler
migration, which is called "migration 0". To do that, open the EOModel (in the folder), right-click on the model name and BlogModel EOModel Resources
select .Generate Migration

Copy the generated code in the clipboard. Close and in the main Eclipse window, right-click on , select and select .Entity Modeler Sources New Class

Type as the package and as the name of the class. Click .your.app.model.migrations BlogModel0 Finish

In the folder, open the package, a class named should be there. Delete everything in that file Sources your.app.model.migrations BlogModel0 EXCEPT
the first line (which should be) and paste the code that was generated by . Save the file.package your.app.model.migrations Entity Modeler

One last step: migrations are disabled by default. To enable them, you need to uncomment two properties in the file that is located in the Properties Resou
 folder. Open that file (double-click on it).rces

Remove the pound char in front of those two properties:

#er.migration.migrateAtStartup=true
#er.migration.createTablesIfNecessary=true

After removing the pound char, the two properties should look like this:

er.migration.migrateAtStartup=true
er.migration.createTablesIfNecessary=true

You are now ready to start the application so that it creates the database! To do so, right-click on (in the folder) and select Application.java your.app Run
 -> . In Eclipse's Console tab, you should see some output, including something similar to:As WOApplication

BlogRest[62990] INFO er.extensions.migration.ERXMigrator - Upgrading BlogModel to version 0 with migration
'your.app.model.migrations.BlogModel0@4743bf3d'
BlogRest[62990] INFO er.extensions.jdbc.ERXJDBCUtilities - Executing CREATE TABLE Author(email VARCHAR(100)
NOT NULL, firstName VARCHAR(50) NOT NULL, id INTEGER NOT NULL, lastName VARCHAR(50) NOT NULL)
BlogRest[62990] INFO er.extensions.jdbc.ERXJDBCUtilities - Executing ALTER TABLE Author ADD PRIMARY KEY (id)
BlogRest[62990] INFO er.extensions.jdbc.ERXJDBCUtilities - Executing CREATE TABLE BlogEntry(authorID INTEGER
NOT NULL, content TIMESTAMP NOT NULL, creationDate TIMESTAMP NOT NULL, id INTEGER NOT NULL, title VARCHAR(255)
NOT NULL)
BlogRest[62990] INFO er.extensions.jdbc.ERXJDBCUtilities - Executing ALTER TABLE BlogEntry ADD PRIMARY KEY
(id)
BlogRest[62990] INFO er.extensions.jdbc.ERXJDBCUtilities - Executing ALTER TABLE BlogEntry ADD CONSTRAINT
"FOREIGN_KEY_BLOGENTRY_AUTHORID_AUTHOR_ID" FOREIGN KEY (authorID) REFERENCES Author (id)
BlogRest[62990] DEBUG NSLog - evaluateExpression: <er.h2.jdbcadaptor.ERH2PlugIn$H2Expression: "UPDATE
_dbupdater SET version = ? WHERE modelname = ?" withBindings: 1:0(version), 2:"BlogModel"(modelName)>

If you see this and that the application is running (it should open a window in your favorite browser), migration worked and your database have been
created, congratulations! You can now stop the application (click the square red button in Eclipse's Console tab) and continue to the next step.

Creating REST controllers and routes
Project Wonder contains a framework called ERRest, which follow the same patterns as Ruby on Rails REST concepts. Using REST-style URLs is perfect
for building a public blog and to create REST services to manage posting over HTTP with JSON, XML or other formats.

By default, a REST route in ERRest will generate a link like this:

/cgi-bin/WebObjects/AppName.woa/ra/EntityName/id

So for our case, to get the first blog posting from BlogRest, the URL will look like this:

/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries/1.html

You can shorten the URL by using mod_rewrite in Apache httpd

Creating controllers

ERRest needs controllers to act as a broker between working with the objects and the routes. So let's create a controller for BlogEntry.

Create a Java class named , in the package, that will extend from BlogEntryController your.app.rest.controllers er.rest.routes.
. Click .ERXDefaultRouteController Finish

When you extend from , a bunch of methods are added to the subclass. Let's see what they are for.ERXDefaultRouteController

updateAction: to update a specific instance of BlogEntry
destroyAction: to delete a specific instance of BlogEntry
showAction: to get one specific instance of BlogEntry
createAction: to create a new object (a new instance of BlogEntry)
indexAction: to list all (or a sublist) of the objects.

In Project Wonder, at the end of a method is a convention for REST and Direct Actions, when you call those methods from certain components, Action
you don't need to add the part.Action

For this tutorial, we will implement the and methods. But first, we need to create a key filter. A key filter will... filter the input and createAction indexAction
the output of REST request so that you don't have to send all attributes for a blog entry. For example, we want to show the details for an author, but we
don't want to show the password for the author (in real-life, the password would be encrypted)!

Add this method in :BlogEntryController

protected ERXKeyFilter filter() {
 ERXKeyFilter personFilter = ERXKeyFilter.filterWithAttributes();
 personFilter.setAnonymousUpdateEnabled(true);

 ERXKeyFilter filter = ERXKeyFilter.filterWithAttributes();
 filter.include(BlogEntry.AUTHOR, personFilter);
 filter.setUnknownKeyIgnored(true);

 return filter;
 }

Now, let's implement the method:createAction

public WOActionResults createAction() throws Throwable {
 BlogEntry entry = create(filter());
 editingContext().saveChanges();
 return response(entry, filter());
 }

In 3 lines of code, you can create an object based on the request, save the new object to the database and return the new object in the response. Not bad,
eh?

Last step in the controller: implementing the method. Again, the code is simple:indexAction

public WOActionResults indexAction() throws Throwable {
 NSArray<BlogEntry> entries = BlogEntry.fetchAllBlogEntries(editingContext());
 return response(entries, filter());
 }

That code simply fetch all blog entries and return them in the response.

We can now go to the next step: adding the routes.

Adding the routes

A route in ERRest is simply a way to define the URL for the entities and to specify which controller the route should use. When your controller extends
from , it's easy to register a controller and a route. In , in the constructor, add the following ERXDefaultRouteController Application.java Application
code:

ERXRouteRequestHandler restRequestHandler = new ERXRouteRequestHandler();
 restRequestHandler.addDefaultRoutes(BlogEntry.ENTITY_NAME);
 ERXRouteRequestHandler.register(restRequestHandler);
 setDefaultRequestHandler(restRequestHandler);

The method do all of the required magic, and use convention. That's why we had to name the controller , addDefaultRoutes BlogEntryController
because the convention is <EntityName>Controller.

We are now reading to add and list blog postings! Start the application and take notice of the URL. It should be something like _http://yourip:someport/cgi-
bin/WebObjects/BlogRest.woa_

Adding posts and authors with curl

Since we didn't implement any HTML for our REST routes, we will create blog entries with , an open source HTTP client that is bundled with Mac OS X curl
(you can use another client, like wget, if you like too). So let's create a blog entry.

To create a blog entry, you need to use the POST HTTP method. We will use JSON as the format since it's a bit less chatty than XML. So if the URL to the
application is command will be:http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa_, the full _curl

curl -X POST -v -d '{ "title": "First post", "content": "Some text", "author": { "firstName": "Pascal",
"lastName": "Robert", "email": "probert@macti.ca" } }' http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.
woa/ra/blogEntries.json

The response should look this:

HTTP/1.0 201 Apple WebObjects
Content-Length: 249
x-webobjects-loadaverage: 0
Content-Type: application/json

{"id":1,"type":"BlogEntry","content":"Some text","creationDate":"2011-12-27T21:59:08Z","title":"First post","
author":{"id":1,"type":"Author","email":"probert@macti.ca","firstName":"Pascal","lastName":"Robert"}}

To get a list of blog entries:

curl -X GET http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries.json

You can stop the application and proceed to the next step.

Adding HTML views for blog posts

Now, let's build a HTML view for blog posts (you don't want your readers to get your posts by JSON, right?). Again, we will use convention to make it work
easily. Open up and add the following method:BlogEntryController

@Override
 protected boolean isAutomaticHtmlRoutingEnabled() {
 return true;
 }

Switching the return value of this method says that we will follow a certain convention for HTML components. The convention for automatic HTML routing
is that the component should be named <EntityName><Action>Page.wo. So in our case, the component will be . Right-click on the BlogEntryIndexPage
project name in Eclipse and select -> . Change the name to and check the button. New WOComponent BlogEntryIndexPage Create HTML contents
Click .Finish

The next step to get it to work is to make to implement the interface.BlogEntryIndexPage er.rest.routes.IERXRouteComponent

import er.rest.routes.IERXRouteComponent;

public class BlogEntryIndexPage extends WOComponent implements IERXRouteComponent {

http://youripsomeport
http://youripsomeport
http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa_

So now, the automatic HTML routing will send the request for to the component. But we don't have any content ra/blogEntries.html BlogEntryIndexPage
in this component, so let's make a method to fetch all blog entries per creation date in descending order. So in , add the BlogEntryIndexPage.java
following method:

public NSArray<BlogEntry> entries() {
 EOEditingContext ec = ERXEC.newEditingContext();
 return BlogEntry.fetchAllBlogEntries(ec, BlogEntry.CREATION_DATE.descs());
 }

We need to use that method in a WORepetition, and for that loop, we need a BlogEntry variable to iterate in the list, so add the following code to BlogEntry
:IndexPage.java

private BlogEntry entryItem;

 public BlogEntry entryItem() {
 return entryItem;
 }

 public void setEntryItem(BlogEntry entryItem) {
 this.entryItem = entryItem;
 }

The Java part is done, so let's add the loop inside the component. Open (it's located in the folder) and right after BlogEntryIndexPage.wo Component
the <body> tag, add:

<wo:loop list="$entries" item="$entryItem">
 <p><wo:str value="$entryItem.title" /></p>
 <p><wo:str value="$entryItem.author.fullName" /></p>
 </wo:loop>

That component code will loop over the blog entries and display the title of the entry + the name of the author. Save everything and run the application.

If you go to , you will see the list of blog entries!http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries.html

Now that we have a list of blog entries, let's make a page to show the content of a blog entry. Create a new component named .BlogEntryShowPage

Open and make sure the class implements .BlogEntryShowPage.java er.rest.routes.IERXRouteComponent

import er.rest.routes.IERXRouteComponent;

public class BlogEntryShowPage extends WOComponent implements IERXRouteComponent {

We need to add other methods to receive the BlogEntry object from the controller. In , add:BlogEntryShowPage.java

private BlogEntry blogEntry;

 @ERXRouteParameter
 public void setBlogEntry(BlogEntry blogEntryFromController) {
 this.blogEntry = blogEntryFromController;
 }

 public BlogEntry blogEntry() {
 return this.blogEntry;
 }

The annotation tells the REST framework that it can automatically receive an object from the controller. And again, it's convention @ERXRouteParameter
at work. You have to use the annotation and the setter name should be , so for a BlogEntry, it's , for a Author, it will be set<EntityName> setBlogEntry setAut

.hor

The Java part of the work is done, so save the Java class. It's time to work on the component part. Open and between the BlogEntryShowPage.wo
<body></body> part, add:

http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries.html

<h1><wo:str value="$blogEntry.title" /></h1>
 <p><wo:str value="$blogEntry.content" /></p>
 <p>Created on: <wo:str value="$blogEntry.creationDate" dateformat="%Y/%m/%d" /></p>
 <p>Added by: <wo:str value="$blogEntry.author.fullName" /></p>

Our view component is done, the only thing remaining is a link for the blog entry list (BlogEntryIndexPage) to the view page (BlogEntryShowPage). Save Bl
 and open . We are going to add a link on the title, you will replace to replace this:ogEntryShowPage.wo BlogEntryIndexPage.wo

<p><wo:str value="$entryItem.title" /></p>

with:

<p><wo:ERXRouteLink entityName="BlogEntry" record="$entryItem" action="show"><wo:str value="$entryItem.title"
/></wo:ERXRouteLink></p>

Save the component and run the app. Go to to get the list of posts, and http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries.html
you should see a link on the title. Click on it, and now you get the full details of the blog entry!

The REST part of this tutorial is now complete, .you can now move to the next part of the tutorial

http://192.168.0.102:52406/cgi-bin/WebObjects/BlogRest.woa/ra/blogEntries.html
https://wiki.wocommunity.org/display/WEB/Your+First+Framework

	Your First Rest Project

